Caffeine ingestion and cycling power output in a low or normal muscle glycogen state.

Exercise and Nutrition Research Group, School of Medical Sciences, RMIT University, Bundoora, VIC, Australia. stephen.lane@rmit.edu.au

Medicine and science in sports and exercise. 2013;(8):1577-84

Abstract

PURPOSE Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (VO2 peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. METHODS Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise-diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg · kg(-1) body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). RESULTS There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). CONCLUSION We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability.

Methodological quality

Publication Type : Clinical Trial

Metadata

MeSH terms : Bicycling ; Caffeine ; Glycogen